Graphene inks are a promising new entrant

- Considerably cheaper than Ag/Cu ink
- Does not form insulating oxide film like Cu
- No need of sintering graphene ink after printing
 - Can be used to print on plastic and paper substrates
- Non-toxic and strong dispersability
- Flexible, robust and crease resistant
- Compatible with all current printing methods
- Graphene inks lose little conductivity when folded

Challenges for commercialization

Poor homogeneity of inks: random mix of few single layers and stacks of graphite adversely
affect the quality of film deposited

 Small flake size: Presence of large number of interflake barriers brings down conductivity significantly

 Optimum ink formulation: Achieving required adhesion to the substrate; ensure cohesion without compromising conductivity

Survey results (3/3)

- Larger flake size
- Greater percentage of monolayer graphene

- Graphite oxide induces cytotoxicity and apoptosis in human lung cells
- Multiwall CNTs longer than 20 µm produce harmful carcinogenic effects similar to asbestos
- Toxicity standards need to be established

Roadmap of applications

Graphene inks are likely to enter the market in stages starting from low cost low functionality applications

SWOT Analysis

<u>Strengths</u>	Weaknesses
•Low cost	•Interflake barriers lower conductivity
•Reasonable conductivity (>1000 ohms/sq)	•Lack of high % of monolayer graphene
•Good transparency (~90%)	Technical challenges with ink formulation
•Flexibility	Conductivity insufficient for high current applications
Abundance and scalability	eg. OPV, solar cells
Compatible with current printing technologies	
•Sinter free curing allows paper/PET substrate	
<u>Opportunities</u>	<u>Threats</u>
•Low cost low functionality applications	Copper inks improving in performance and cheaper
•Silver inks getting expensive	than silver
•Emerging applications: RFID tags, smart packaging	•Competing technologies may capture market share if
•Low end ITO replacement in near future	inks take long to reach required performance
•Flexible electronics	Toxicity issues need to be addressed
•Ink patent landscape not mature: scope for early mover	Durability still unproven
advantage	

Comparison of CVD graphene and inks

CVD method	Solution-based exfoliation
High quality graphene	Low quality graphene
Mostly monolayer sheets	Multi-layer sheets
Sheet size of few cm	Sheet size of few microns
Expensive	Cheap
Replacement of ITO	Electrostatic dissipation, conductive coatings

